
Advances in triggering
and data acquisition

Jennifer Ngadiuba (Caltech)

Snowmass Community Planning Meeting
Collider Data Analysis Strategies
October 6th, 2020

The trigger system @ LHC
•Experiments at colliders must deal with extreme data rates of O(100) Tb/s

•We must reduce these to manageable levels for offline processing and storage
by filtering collision events → triggering

2

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline

100 ms 1 s1 ns 1 μs

40 MHz 100 KHz
1 KHz

1 MB/event

Software
Trigger

Hardware
trigger

Coarse reconstruction
O(μs) latency

Computing farm
O(100 ms) latency

Trigger challenges @ HL-LHC
•Untriggered events are lost forever → need very fast and very accurate algorithms

•With higher rates, more pileup, more readout channels
event data to become more complex at HL-LHC

•A challenge to mantain physics
→ need more sophisticated triggers and DAQ systems

3

40 pp collisions per bunch crossing 200 pp collisions per bunch crossing
+ more granular detectors

LHC today HL-LHC

Advances & opportunities
•Hardware trigger:

- port offline-like algorithms to FPGAs [ex, tracking and particle flow]

- deploy deep learning, highly parallelizable inference on FPGAs

- take advantge of new industry tools for compiling more common C/C++ code to
hardware language [ex, hls4ml for low latency DL inference]

4

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

�����������
�����

������
���������"�

#������

$

� ��������� ������
�����������

�� �����������

�����
�������

�����
���!������

��������������������

� ���������"����
������

�����

� ���	���
����"����"������"

hls 4 ml

hls4ml

HLS 4 ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

Catapult

https://cds.cern.ch/record/2283192?ln=en
https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07027

Advances & opportunities
•Software trigger:

- heterogenous computing systems to increase througput at flat cost [*]

- with GPUs in place deep learning inference could be made very fast
(and faster than the standard physics-inspired reconstruction algorithm)

5

[*] Example for CMS:

today offloading 24% of the
online reconstruction to GPUs
(pixel tracking, calorimeter
reconstruction)

Going into production:
equip all nodes with a GPU

x 10

See A. Bocci talk at CHEP19

https://indico.cern.ch/event/773049/contributions/3474336/attachments/1940557/3217478/Heterogeneous_online_reconstruction_at_CMS.pdf

Advances & opportunities
•Software trigger:

- heterogenous computing systems to increase througput at flat cost

- with GPUs in place deep learning inference could be made very fast
(and faster than the standard physics-inspired reconstruction algorithm)

- CPU+FPGA system and more exotic processors also being explored
with promising results for DL [*]

6

Thank you! [*] D. Rankin, P. Harris, et al.

https://indico.cern.ch/event/942656/

